Ldren: [con(icon, color: color ontainer(

margin: const EdgeIns child: label style <> God

Google Developer Student Clubs University of Toronto Mississauga

Build with AI: Intro to LLMs

Presented by; Hamza & Rahul

Introduction

_buckets=5)

Important Notice

- Please scan the QR code to join the UTM GDSC discord where you can keep up to date with all our activities
- Also you should follow the Instagram @gdscutm
- Women In Tech Conference coming up March 23rd and 24th, almost sold out, go to @witgdsc for more details

Citations

- <u>https://pages.cs.wisc.edu/~kandasamy/courses/23spring-c</u> <u>s760/slides/lecture26-langmodels.pdf</u>
- <u>https://docs.google.com/presentation/d/1FpNBGb70w2p5krU</u> <u>cfPaIHHq9Y8S1GV5Eb2ESAIWkWHA/edit#slide=id.p</u>
- <u>https://erdem.pl/2021/05/understanding-positional-encod</u> <u>ing-in-transformers</u>
- https://nlp.seas.harvard.edu/2018/04/03/attention.html
- https://jalammar.github.io/illustrated-transformer/
- https://www.youtube.com/watch?v=zjkBMFhNj_g
- https://aws.amazon.com/what-is/foundation-models/

Foundation Models

- Foundation models are a form of generative artificial intelligence
- They generate output from one or more human language inputs (prompts)
- Models are based on complex neural networks including generative adversarial networks (GANs), transformers, and variational encoders

What really is a Large Language Model...?

- Large language models are a type of foundation model
- Large language models are parameterized as a transformer, a type of deep neural network
- Generally, decoder-only (eg. GPT), and can be encoder-decoder
- Large language models are pre-trained via self-supervision (next-token prediction)
- Ok now you know essentially a lot of words but what does this really look like

What really is a Large Language Model...?

LLM Training

lookup.KeyValue f.constant(['en =tf.constant([0 .lookup.Static\

ouckets=5)

Compressing the Internet

Chunk of the internet, ~10TB of text 6,000 GPUs for 12 days, ~\$2M ~1e24 FLOPS

*numbers for Llama 2 70B

Neural Network

Predicts the next word in the sequence.

e.g. context of 4 words

predict next word

Language Modeling

- Goal: Model the probability distribution p(x), for any sentence x
- Mathematically, we can break it down into next-token-prediction;

 $p(x) = p(x_t, x_{t-1}, ..., x_1)$ = $p(x_t | x_{t-1}, ..., x_1) p(x_{t-1}..., x_1)$ [apply chain rule of probability]

= $p(x_t | x_{t-1}, ..., x_1) p(x_{t-1} | x_{t-2}, ..., x_1) ... p(x_1)$ [recursively]

Transformer Architecture

Lookup.KeyValue f.constant(['er =tf.constant([(.lookup.Static\

_buckets=5)

Input with Encoder

Self-Attention

Demo

 <u>https://colab.research.google.com/github/tensorflow/</u> <u>tensor2tensor/blob/master/tensor2tensor/notebooks/he</u> <u>llo_t2t.ipynb#scrollTo=0JKU36QAfq0C</u>

Input	Thinking	Machines
Embedding	X 1	X2
Queries	q 1	q ₂
Keys	k 1	k2
Values	V 1	V2
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V1	V2
Sum	Z1	Z ₂

Multi-Head Self-Attention

Multi-Head Self-Attention

Multi-Head Self-Attention Unification

1) Concatenate all the attention heads

	Z)	Z	Ĺ.	Z	2	Z	3	7	Z 4	7	Z 5	2	Z 6	7	Z 7	

2) Multiply with a weight matrix W^o that was trained jointly with the model

Х

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Multi-Head Self-Attention Unification Summary

Positional Encoding

Positional Encoding Example

Positional Encoding Multi-Function Approach

How Positional Encoding actually looks like

Residuals

Encoder-Decoder Connection

Decoder

Decoding time step: 1 2 3 4 5 6

OUTPUT

Self-Attention Vectors

Decoding time step: 1 (2) 3 4 5 6

OUTPUT |

Final Layer and Softmax

Which word in our vocabulary is associated with this index?

Get the index of the cell with the highest value (argmax)

am

5

Training

Output Vocabulary

WORD	a	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

Output Vocabulary

WORD	a	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"

0.0 1.0 0.0 0.0 0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0
-------------------------	-----	-----	-----	-----	-----	-----

Loss Function

Target Model Outputs

Trained Model Outputs

-0.4

-0.8

Finetuning

lookup.KeyValue f.constant(['en =tf.constant([@ .lookup.Static\

_buckets=5)

What is Finetuning?

every

~year

every ~week

Stage 1: Pretraining

1. Download ~10TB of text.

- 2. Get a cluster of ~6,000 GPUs.
 - 3. Compress the text into a neural network, pay

~\$2M, wait ~12 days.

4. Obtain base model.

Stage 2: Finetuning

1. Write labeling instructions

2. Hire people (or use scale.ai!), collect 100K high

quality ideal Q&A responses, and/or comparisons.

3. Finetune base model on this data, wait ~1 day.

4. Obtain assistant model.

5. Run a lot of evaluations.

6. Deploy.

7. Monitor, collect misbehaviors, go to step 1.

Example

<USER>

Can you write a short introduction about the relevance of the term "monopsony" in economics? Please use examples related to potential monopsonies in the labour market and cite relevant research.

<ASSISTANT>

"Monopsony" refers to a market structure where there is only one buyer for a particular good or service. In economics, this term is particularly relevant in the labor market, where a monopsony employer has significant power over the wages and working conditions of their employees. The presence of a monopsony can result in lower wages and reduced employment opportunities for workers, as the employer has little incentive to increase wages or provide better working conditions...

~100K conversations

Results

<USER>

Can you help me with this code? It seems like there is a bug. print("hello world)

<ASSISTANT>

It looks like you forgot to close the string passed to the function print. You have to add a closing quote to properly terminate the string. Here is the corrected function:

print("hello world")

Let me know if I can help with anything else!

Comparison Labeling

It is often much easier to compare Answers instead of writing Answers.

Simple example: it's much easier to spot a good haiku than it is to generate one:

Scaling Laws

lookup.KeyValue f.constant(['em =tf.constant([0 .lookup.Static\

_buckets=5)

What are Scaling Laws?

Performance of LLMs is a smooth, well-behaved, predictable function of:

- N, the number of parameters in the network
- **D**, the amount of text we train on

And the trends do not show signs of "topping out"

=> We can expect more intelligence "for free" by scaling

Example change in capabilities

Conclusion

lookup.KeyValue f.constant(['en =tf.constant([@ .lookup.Static\

ouckets=5)

We don't know what goes on inside LLMs (yet)

• Simply, there's too many neurons to probe and deconstruct

output	model	recurrent	architecture	that	called	attention	former				
30	model	model	architecture	that	called	attention	former	,			
27	model	model	that	that	called	**	-				
24	model	model	that	that	called	**	-				
21	model	model	that	that	the	âĢ	-				
18	model	model	that	that	the	SO	-				
15	method	method	that	that	which	so	-				
12	method	-	that	that	which	50	-	,			
9	and	and	that	for	which	result	-				
6	а	to			and						
3	,	x	to	,	and	same	_	I.			
input		н		п		-					
	new	simple	network	architecture	,	the	Trans	former			
	Input token										
	Probability										
	-	0	0.2	0.4		0.6	0.8	1			

LLMs may or may not be better than humans

- Prior work in AI (eg. AlphaZero from Deepmind trained with RL) have outperformed humans, but does that imply LLMs will follow this path?
- LLMs aren't humans they don't learn like humans
- Eg. LLMs are very good at predicting the next token, which humans for the most part aren't

Thank you!

Lookup.KeyValue f.constant(['em =tf.constant([@ .lookup.Static\

ouckets=5)